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Afi.vrract — For the transmission-line modes, a mnfticonductor transmis-

sion line in a multilayered dielectric medium can be characterized by fonr

matrix parameters the capacitance rnatrtx [C], the inductance matrix [L],

the shunt conductance matrix [G], and the series resistarice matrix [R 1.
The first two matrices [C] and [L] can be obtained from equivalent
electrostatic and magnetostatic problems. The conductance matrix [G J can
be obtained by changing all dielectric constants c; to complex dielectric

constants ii in the equivalent electrostatic problem. The resistance matrix

[R] can be obtahted by applying a perturbation method to each mode of

the transmission line. A computer program has been written for an arW-

trary line, and sample computations are presented.

I. INTRODUCTION

T O A GOOD APPROXIMATION, the transmission-

line properties of a multiconductor transmission line

in a multilayered dielectric medium can be characterized

by four matrix parameters: the capacitance matrix [C], the

inductance matrix [L], the shunt conductance matrix [G],

and the series resistance matrix [R]. The first matrix [C]

can be obtained by solving an electrostatic problem in-

volving electric potential and electric charge. The second

matrix [L] can be obtained by solving a magnetostatic

problem involving magnetic flux linkage and electric cur-

rent. This magnetostatic problem has an electrostatic ana-

logue which can be solved as an electrostatic problem with

c replaced by ~. The theory for calculating [C] and [L],

and sample computations, are given in [1]. The computer

programs used for the computations are given in [2],

The ‘solution for the shunt conductance matrix [G] can

be obtained in a simple manner by considering the dielec-

tric constant Ci of the various dielectrics to be complex.

This results in a complex matrix [~], the real part of which

is [C] and the imaginary-part of which is related to [G]

according to [G]= Re[jtiC].

The solution for the series resistance matrix is more

complicated. On a transmission line with n conductors

plus ground there can exist n modes of propagation. Each

mode, which normally consists of voltages and currents on

all wires, propagates exponentially along the line. The

usual perturbation analysis for conductor losses that ap-

plies to single-mode lines [3], [4] can be applied to each
,,
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mode of the multiconductor transmission line for the de-

termination of attenuation constants, once the attenuation,.
constants are fcund, the [R] matrix of the multlconductor

line can be obtained by solving a set of simultaneous

equations.
The four matrixes [C], [L], [R], and [G] completely

characterize the transmission-line behavior (to the TEM

approximation) in the frequency domain according to nml-

ticonductor transmission-line theory [4], [5]. The situation

is not so simple in the time domain. The lossy line no

longer has the time-delayed wave solutions that it had in

the loss-free case. Two possible methods for obtaining time

domain solutions for the 10SSYline are: a) Fourier trans-

formation to the frequency domain, solution in the

frequency domiik, and inverse Fourier transformation to

the time domain; and b) discretation of line length variable

and time, reduction of the equations to state-space form,

and marching on in time.

II. BASIC THEORY

The transmission-line systems we wish to consider are

either N conductors in an M-layered dielectric medium

above a ground plane, as shown in Fig. l; or N conductors

in an M-layered dielectric medium between two ground

planes, as shown in Fig. 2. The conductors can be of

arbitrary shape and of either finite thickness or zero thick-

ness. The basic formulation for the capacitance matrix [C]

and the inductance matrix’ [L] for the lines is given in [1]

and [2]. In the present paper we take these solutions and

extend them to calculate the shunt conductance matrix [G]

and the series resistance matrix [R],

The basic transmission-line equations for a multiconduc-

tor transmission line in the frequency domain (eJof time

variation) are

(1)

(2)

Here ~ is the column vector of line currents, ? is the

column vector of line voltages, z is the axis of the line, and

a is the radian frequency. The first equation is a statement

of the conservation of charge, and the second equation is a

statement of Faraday’s law of induction.

The complex power in the + z direction is given by

p=j.~ (3)
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Fig. 1. A multiconductor transmission line in a multilayered dielectric
medium above a ground plane.
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Fig. 2. A multiconductor transmission line in a multilayered dielectric

medium between two ground planes.

where ~* is the transpose ( - ) conjugate ( * ) of ?, and rms

values of current and voltage are used. The real part of P

is the time-average power transmitted by the line

P~=Re(~*~).

The rate of decrease in P with z is given by

ap—. —
dz

:(1’7)

=_l*~v_ L?I* -
61Z az ‘-

Substituting from (1) and (2), we obtain

–g=I*[R +juL]7+ P*[G+jtiE]*F.

(4)

(5)

(6)

The transposes on [G] and [~] can be dropped since they

are symmetric matrices. The real part of – 6’P/ ilz is the

time-average power lost per unit length of line, that is:

()P~=Re –~ =Pc+P~= i*[R]~+F*[G]p.

(7)

For any single mode, the ratio PL/P~ is twice the attenua-

tion constant of that mode, the same as for the single-mode

line [4], [5].

To obtain the modes of the transmission line, we seek

solutions which vary as

F= IeJwt-yz (8)

P= PeJof-Y: (9)

where y is the propagation constant. Substituting these

into (1) and (2), we have

y~= [G+@C]~ (lo)

yp=[l?+jd]l. (11)

Substituting for ~ from (11) into (10), and vice versa, we

obtain

[G+juC][R+@L]~=y2~ (12)

[R+jtiL][G +j&]t=y’ti. (13)

These are eigenvalue equations for y2. Since [C], [L], [G],

and [R] are all symmetric matrices, the left-hand coeffi-

cient matrix of (12) is the adjoint (with respect to the inner

product) of the left-hand coefficient matrix of (13), and

vice versa. Hence, the eigenvalues y 2 obtained from (12)

must be equal to those obtained from (13). The eigenvec-

tors ~ obtained from (12) will not be equal to the eigenvec-

tors fi obtained from (13). Rather ~ will be the right-hand

eigenvecto;s of the unsymmetric matrix [G + jQC][R +
jtiL] an~ V will be the left-hand eigenvectors. The eigen-

vectors 1 and ~ cannot be chosen independently of each

other, but instead must be chosen to satisfy (10) and (11).

III. THE CONDUCTANCE MATRIX

The simplest way to evaluate the conductance matrix [G]

is to replace the real dielectric constants ~, in the loss-free

solution [1], [2] by complex dielectric constants [6]

:z=(;–j~;= t;(l–jtan~,). (14)

Here, c; and – c; are the real and imaginary parts of t,,

and tan ~, = t;/cJ is the loss tangent. The imaginary part of

t is sometimes written in terms of a conductivity u as

c “ = u/@, but this is somewhat misleading since the losses

are usually not due to conduction current.

Using the complex dielectric constants in the previous

solution [1], [2], we obtain a complex “capacitance” matrix

[~] for the transmission-line system. This is actually the

complex matrix appearing in (l), or

j.o[~]=[G+@ C]. (15)

The conductance is just the real part of (15), or

[G]= Re[j@~]=-Im(ti~). (16)

The capacitance matrix for the lossy line is

[C]= Re[~]. (17)

For lines with low dielectric losses, the [C] of (17) should

be approximately equal to that for the loss-free case. To

summarize, we calculate [G + jtiC] for the lossy line by

using the solution previously developed [1], [2], allowing all

dielectric constants to be complex, obtaining the complex

[C], and finally applying (15).

It is often more important to obtain the attenuation

constants of the modes than the [G] matrix itself. To do

this, we use the relationship

PD

aD = 2PT
(18)



BARRINGTON &@lVEI : LOSSES ON MULTICONDUCTOR TRANSMISS1ON LINES

where P~ is given by (4) and P~ by

PD=V*[G]F. (19)

It should be emphasized that both PT and P~ must be

calculated for each particular mode. If the dielectric losses

are small, we can use the loss-free modes to calculate both

P~ and P~, similar to the procedure used in the next

section.

IV, THE RESISTANCE MATRIX

The usual way to compute the conductor losses on a

single-mode line is to calculate the attenuation constant by

a perturbation approach [5]. To extend this solution to a

multiconductor transmission line, we should apply this

approach separately to each mode. Once we have all the

modal attenuation constants, we can calculate the resis-

tance matrix for the line,

We start with the modes of the loss-free line, which are

solutions to the eigenvalue equations

[C][L]P=+P (20)

‘P

[L][C]P=+ (21)

‘P

where the superscripts o denote unperturbed, and

(22)

is the phase velocity, with /3 the phase constant (y= j~ ).

Equations (20) and (21) are (12) and (13) with [R] = [G]= O.

Again, i“ and ~ must be related by (10) and (11), which

become

i“=up[c]ti (23)

Vo=up[l’]l” (24)

in the loss-free case.

It is important to note that the phase velocities HP are

generally different for each mode, since the transmission

line has several different dielectrics. Such a line is referred

to by Kajfez [3] as a multivelocity transmission line. All we

know for sure is that the up satisfy c > up > c/G, where

c is the velocity of light and t ma is the largest dielectric

constant present.

Once we solve (20)-(24) for the unperturbed mode volt-

ages and currents, we can calculate the unperturbed power

flow from (4) as

P;= Inn. (25)

Note that the Re operator and the conjugate on ~ can be

dropped since the unperturbed & and ~“ are nearly real.

The power loss per unit length of the transmission line can

be calculated by the usual perturbation formula

where R~ is the surface resistance of the metal, J~ is the

current density on the k th conductor, and the integral is

707

taken over all metal surfaces l~. Equation (26) is evaluated

by using the moment solution [1], [2] in a summation

approximation tcl the integral. Once Pc is evaluated for a

given mode, the attenuation due to conductor losses is

approximately given by

Pc

ac= 2P; “
(27)

Again (27) is valid only for each mode, not for arbitrary

excitations.

Finally, once we have the attenuation constants for each

mode, we can evaluate the resistance matrix as follows.

From (13) with [G] = O we have

(a+j~)2ti= [R+jtiL][jtiC]ti. (28)

If the losses are low, we can take ~=@’ to be real. The

imaginary part of (28) is then

2a@-’= a[R][C]@. (29)

Finally, setting ~ = /3” and using (23), this reduces to

2ati=[R]i0. (30)

since we now know a, @, and ~“ for each mode, (30) is

sufficient for calculating [R]. To be specific, for mode i let

we

31)

ave

(32)

These are N2 equations for the N2 unknowns [R]. Hence,
once the a; are determined, we can calculate all R,, for

the multiconduct or transmission line.

As a word of caution, note that fi and ~ cannot both be

taken as real in (10) or (11) to calculate a. If this were

done, the resulting left-hand side of (30) would be wrong.

(The factor of 2 would be mis~ing.) The reason for this

error lies in the fact that V and 1 are slightly out of phase,

by an amount just sufficient to account for the factor of 2.

V. LOSSES ON THE GROUND PLANES

In the moment solution [1], [2], the current is determined

on the conductin~g lines and on the upper ground plane, if
present, but not on the lower ground plane. This is because

image theory is used to account for the current on the

lower ground plane. Hence, to include in (26) the loss on

the lower ground plane, we must first determine the cur-

rent on it.

The magnetic field H from an infinitely long filament of

current is given by the Biot–Savart law. If we consider the
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Fig. 3. Coordinate system for a subsection of current above the lower
ground plane.

subsection of current ~ AI, in free space to be a filament,

its magnetic field has only a @j component given by

(3.3)

where (p,, @j) are the local polar coordinates (see Fig. 3).

The tangential component of If at the ground plane is

p, Y,
Ht = H+, COS @j = —

()2!?pJ ~
(34)

where (x,, y,) are the local rectangular coordinates of ~ A 11
(see Fig. 3). The tangential component of H at a point

(xi, O) due to all elements of current (including those on the

upper ground plane, if present) above the lower ground

plane is the sum of (34) over all elements, or

The H, due to all image currents is also equal to (35),

hence the total H, at (xl, O) is just twice that of (35).

Hence, the current <~~ at a point (x,, O) on the lower

ground plane is

%
~lujy,

JILG = ~ (36)
, (X1-x, )’+y; ”

We use this result to numerically evaluate the losses in the

lower ground plane,

If the ground planes are perfect, we include in (26) only

that current on the transmission lines. If there exists an

imperfect lower ground plane, we include the current ele-

ments J L~Al, L~ in (26) in addition to the current on the

lines. If there also exists an imperfect upper ground plane,

its losses are included in (26) in the same manner as the

losses on the lines. For the evaluation of losses on the

lower ground plane, we include a width of it equal to 2 or 3

times the transverse extent of the transmission lines.
The incremental inductance rule, together with numeri-

cal differentiation could be used as suggested by Wheeler

[7]. However, the numerical integration used in this paper

is easier to implement in a general computer program.

VI. NUMERICAL EXAMPLES

A general computer program has been written for multi-

conductor transmission lines in multilayered dielectric

media. Some examples are given in this section to test the

program. We compare our results to those available in the

literature whenever possible.

Example 1

Consider a single conducting line of circular cross sec-

tion, diameter d =1, and a distance H above a perfect

--d

Y

x

~RFECT CONDIJCTCR

Fig. 4. A circular conductor above a perfectly conducting ground plane.

TABLE I
COMPANSONOF (A) THENUMERICAL SOLUTIONTO ( B) THE

ANALflICAL SOLUTIONFORTHETRANSMISSIONLINE OF FIG. 4

HI Solution / c(F/m.) I R( lm.)

2
(A) 1.073 x 10-’0 0.8611 x ,0-3

(B) 1.078 x 10-10 0.8,80 x ,0-’

3
(A) 0.8944 x 10-10 0.8459 x 10-3

(B) 0.8980 x 10-10 0.8426 x 10-3

4
(A) 0.8008 x 10-’0 0.8407 x 10-3

(B) 0.8037 X 10
-lo

0.8374 x 10-3

5
(A) 0.7410 x 10-10 0.8385 x 10-3

(B) 0.7434 x 10-10 0.8350 x 10
-3

70.6744 x 10-4

0.6771 x 10
-4

10.6038 x 10-4

0.6060 x 10
-4

I

0.5587 X 10-4

0.5605 X 10
-4

ground plane as shown in Fig. 4. The dielectric medium

surrounding the line is infinite in extent with dielectric

constant E, = 4 and loss tangent tan~ =1,2X 10-3. The

circular conductor is made of copper for which the surface

resistance is R, = 2.61 X 10– 7@, and the frequency f is

taken to be 100 MHz. The numbers of subsections chosen

are 20 for the circular conductor and 30 for the ground

plane from x = – 1.5H to x = 1.5H, where H k the dis-

tance from the ground plane to the axis of the circular

conductor.

Analytical formulas for the L., C, R, and G parameters

of the two-wire line can be found in [5, table 9.01]. For the

single-wire line over ground, L and R are one-half those

values, and C and G are twice those values, or

L = ; cosh-1(2H/d) (37)

c=
2 m

cosh-l(2H/d)
(38)

‘=~[=a ’39)
G=

2776x tan~
(40)

cosh-l (2H/d) “

A comparison of the results computed from our program

with the above analytical solution is given in Table I. The

value of C computed from the complex dielectric constant

agrees with that computed from a real dielectric constant
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Fig. 5. A rnicrostrip transmission line.

TABLE II
RESULTSCOMPUTEDWITH THEGENERALPROGRAMFO>THE

MICROSTRJPOF FIG. 5

./” 01 0.2 0.3 04 0.6 10 12 14 2.0

RW.) 0.06605 0 03993 0.02986 0 Ozboo 0.01848 0,01315 0.01173 0 01061 0.00843

.ZH I
&.(dB) 21,981 13.289 9.937 8.120 6.150 6.376 3.906 3 538 2.807

,

using the previous program [1] to more than four signifi-

cant figures in each case.

Example 2

Next consider the microstip shown in Fig. 5. The strip-

line and the ground plane are both made of copper, with

surface resistance R, = 2.61X 10- 7~. The frequency ~ is

taken to be 1 MHz. The substrate has a dielectric constant

C, =11.7 and a loss tangent tan 8 = 10– 3. Above the strip,

c, = 1 and tan 8 = 8 x 10–4. The thickness of the substrate

is H = 0.02 and the thickness of strip is T= 0.02 H.

For the program, we use 26 subsections for the strip

contour, 12 subsections from x = – 1.5 [W, H] to x =

– 0.5 W on the dielectric interface to the left of the strip,

and 12 subsections from x = 0.5W to x =1.5 [W, H] on

the dielectric interface to the right of the strip, Here [W, H]
denotes the larger of W and H. The numerical results are

listed in Table II. The last row of the table is based on the

relationship

ac = 4.343 ~ (dB/m) (41)
0

where 20 is the characteristic impedance of the stripline.

Fig. 6 shows a plot of the last column of Table II com-

pared with the same parameter obtained in [8] by an

analytical approach. The agreement between these two very

different methods of solution is good.

Example 3

To illustrate the generality of the solution and computer

program, the example shown in Fig. 7 is considered, The

numbers of subsections used are 8 for the circular conduc-

tor, 6 for the other three conductors, 13 for the upper

ground plane from x = – 1.5 to x = 1.5, 8 for the upper left

dielectric interface from x = – 1.5 to x = 0.1, 6 for the

upper right dielectric interface from x = 0.3 to x =1.5, 5

for both the lower left and right dielectric interfaces from

x= -1,5 tox=– O.5 and from x=O.5 tox=l.5, and 2

for the lower middle dielectric interface from x = – 0.1 to
~ = f).1. The conducting material is copper for which R, =

●O, ,
30 I I I 11! 111

— .“. IYII% ,
d+-++++ “x ?“””’””’ -1--wllml

+—tH+Hf

10

8

6

3

2

1
01 02 0304 a60el13 ? 3 4

W/H

Fig. 6. Comparison of numerical and analytical [8] solutions for con-
ductor attenuation on a microstrip transmission line (T,/H = 0.02).

GROUND PLD NE

Fig. 7, Four conducting transmission lines in a three-layered dielectric

medium between two ground planes.

TABLE III
THE MATRICES[C], [L], [G], AND [R] FOR THE MULTICONDUCTOR

TRANSMISSION LINE OF FIG. 7

I

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

—

J

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

—

C(I, J)

0. 3088E-09

-O.36O6E-1O

-0.2848E-11

-0. 2459 E-.1O

-0. 3606E-10

0. 3331 E-.O9

-0. 3045 E--1O

-O.1641E-.1O

-0. 2848E-11

-0. 3045E-10

0.3806E-09

-O. 3178E-10

-O.2459E-1O

-O.1641E-1O

-O.3178E-1O

0.2328E-09

L(I, J)

0.2714E-06

0.&&88E-07

0.1295E-07

0.3442E-07

0.4488E-07

0.2594E-06

0.3447E-07

0.3742E-07

0.1295E-07

0.3447E-07

0.2570E-06

0.5248E-07

0.3442E-07

0.3742E-07

0.5248E-07

0.3326E-06

G(I, J)

0. 6420E-06

-0.1701E-06

-0.1327E-07

-0.6070E-07

~0.1701E-06

0.1481E-05

-0.1498E-06

-0. 9688E-07

-0.1327E-07

-0. 1498E-06

0. 1608E-05

-0.1777E-06

-0. 6070E-07

-0.9688E-07

-0.1777E-06

0.6383E-06

R(I, J)

0.7375E-03

0.8518E-04

0.4403E-04

0. 6033E-04

0.8518E-04

0.6801E-03

0.8758E-04

2.1401E-03

0.4403E-Ob

D.8758E-04

0.6711E-03

0.1604E-03

0.6033E-04

0.1401E-03

0.1604E-03

0.6901E-03

2.61 X 10- 7fi, and the frequency is 1 MHz. The computed

results are iisted on the following two pages of computer

output. No alternative solution can be given for compari-

son. The upper rectangular conductor is #1, the triangular

conductor #2, the lower rectangular conductor #3, and

the circular conductor #4.
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TABLE IV
THE EIGENVALUES,ATTENUATION CONSTANTS,AND

EIGENVECTORSFORTHE MULTICONDUCTORTRANSMISSIONLINE
OFFIG. 7

MODE NUMBER 1 EIGEN. = 0.8775E+01 ALPEA = 0.1296E-04

MODE NUMBER 2 EIGEN, = 0.7675E+31 ALPHA = 0. 1174E-04

MODE NOMBER 3 EIGEN. = 0.7061Ei+l ALPHA = 0.1277E-O&

MODE NOMBER 4 EIGEN. = 0.6529EH1 ALPHA = 0.8297E-05

Mode voltages Mod. currents

V(l,l) = 0.1794EH0 1(1,1) = 0.3239E-02

V(2,1) = 0.3319Ei+0 1(2,1) = 0.7304E-02

v(3,1) = 0.8506E+Q0 1(3,1) = 0.3051E–01

v(4,1) = 0.3662EtO0 1(4,1) = 0.4892E-02

v(I,2) = 0.6429EW0 1(1,2) = 0.1845E-01

v(2,2) = 0.7087EtO0 1(2,2) = 0.2365E-01

V(3,2) =-O.2590E+30 1(3,2) = –0.1365E-01

v(4,2) = 0.1318 E-w30 1(4,2) = 0.1241E-02

V(1,3) = -0.7955EtO0 1(1,3) = -0.3056E-01

v(2,3) = 0.5605EH30 1(2,3) = 0.2419E–01

v(3,3) = -0.8412E-01 1(3>3) = -0.6051E-02

v(4,3) = 0.2145E+30 1(4,3) = O.71O2E-O2

V(1,4) = -0.9530E-01 1(1,4) = -0.1517E-02

v(2,4) = 0.1939EtO0 1(2,4) = 0.9421E-02

V(3,4) = 0.l191EtO0 1(3,4) = 0.8270E-02

v(4,4) = -0.9691E+30 1(4,4) = -0.2701E-01

VII. DISCUSSION

The numerical solution, implemented by the general

purpose computer program of the report [9], has been

found to be accurate for cases previously treated in the

literature. Those cases previously considered were all for

problems of some particular geometry, and all for single-

mode transmission lines. Our solution is general in that it

can treat multiconductor transmission lines of arbitrary

cross sections in multilayered dielectric media. Our solu-

tion is also applicable to multiple dielectric media of other

shapes, not necessarily layered, but our computer program

is not written to handle such cases.

For the conductance matrix [G], the solution is the same

as for the previously treated loss-free solution, except that

the real dielectric constants are replaced by the complex

ones of (14). For the resistance matrix [R], an extension of

the usual perturbation method of [5] is used. This extension

requires that first the modes of the multiconductor trans-

mission line be determined from the eigenvalue equation

(21), and second the attenuation constants of all modes be

determined from (27). Then, if desired, the [R] matrix for

the multiconductor line is determined from (30). This

solution uses the approximation of conductor surface resis-

tance R, for the metal surfaces.
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