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Losses on Multiconductor Transmission
Lines in Multilayered Dielectric Media

ROGER F. HARRINGTON, FeLLOW, IEEE, AND CAO WEI

Abstract —For the transmission-line modes, a multiconductor transmis-
sion line in a multilayered dielectric medium can be characterized by four
matrix parameters: the capacitance matrix [C], the inductance matrix [L],
the shunt conductance matrix {G], and the series resistarice matrix [R].
The first two matrices [C] and [L)] can be obtained from equivalent
electrostatic and magnetostatic problems. The conductance matrix [G] can
be obtained by clianging all dielectric constants ¢€; to complex dielectric
constants €; in the equivalent electrostatic problem. The resistance matrix
[R1 can be obtained by applying a perturbation method to each mode of
the transmission line. A computer program has been written for an arbi-
trary line, and sample computations are presented.

I. INTRODUCTION

O A GOOD APPROXIMATION, the transmission-

line properties of a multiconductor transmission line
in a multilayered dielectric medium can be characterized
by four matrix parameters: the capacitance matrix [C], the
inductance matrix [ L], the shunt conductance matrix [G],
and the series resistance matrix [R]. The first matrix [C]
can be obtained by solving an electrostatic problem in-
volving electric potential and electric charge. The second
matrix [L] can be obtained by solving a magnetostatic
problem involving magnetic flux linkage and electric cur-
rent. This magnetostatic problem has an electrostatic ana-
logue which can be solved as an electrostatic problem with
€ replaced by u. The theory for calculating [C] and [L],
and sample computations, are given in [1]. The computer
programs used for the computations are given in [2].

The solution for the shunt conductance matrix [G] can
be obtained in a simple manner by considering the dielec-
tric constant ¢; of the various dielectrics to be complex.
This results in a complex matrix [C], the real part of which
is [C] and the imaginary part of which is related to [G]
according to [G]=Re[ jwC].

The solution for the series resistance matrix is more
complicated. On a transmission line with n conductors
plus ground there can exist » modes of propagation. Each
mode, which normally consists of voltages and currents on
all wires, propagates exponentially along the line. The
usual perturbation analysis for conductor losses that ap-
plies to single-mode lines [3], [4] can be applied to each
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mode of the multiconductor transmission line for the de-
termination of attenuation constants. Once the attenuation
constants are found, the [R] matrix of the multiconductor
line can be obtained by solving a set of simultaneous
equations.

The four matrixes [C), [L], [R], and [G] completely
characterize the transmission-line behavior (to the TEM
approximation) in the frequency domain according to mul-
ticonductor transmission-line theory [4], [5]. The situation
is not so simple in the time domain. The lossy line no
longer has the time-delayed wave solutions that it had in
the loss-free case. Two possible methods for obtaining time
domain solutions for the lossy line are: a) Fourier trans-
formation to the frequency domain, solution in the
frequency domain, and inverse Fourier transformation to
the time domain; and b) discretation of line length variable
and time, reduction of the equations to state-space form,
and marching on in time.

I1. BASIC THEORY

The transmission-line systems we wish to consider are
either N conductors in an M-layered dielectric medium
above a ground plane, as shown in Fig. 1, or N conductors
in an M-layered dielectric medium between two ground
planes, as shown in Fig. 2. The conductors can be of
arbitrary shape and of either finite thickness or zero thick-
ness. The basic formulation for the capacitance matrix [C]
and the inductance matrix [L] for the lines is given in [1]
and [2). In the present paper we take these solutions and
extend them to calculate the shunt conductance matrix [G]
and the series resistance matrix [R].

The basic transmission-line equations for a multiconduc-
tor transmission line in the frequency domain (e/“’ time
variation) are

ar -
a—=[G+ij]V (1)
v
———[R+]wL]I (2)
Here I is the column vector of line currents, V is the
column vector of line voltages, z is the axis of the line, and
w is the radian frequency. The first equation is a statement
of the conservation of charge, and the second equation is a
statement of Faraday’s law of induction.
The complex power in the + z direction is given by

P=I*V

(3)
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Fig. 1. A multiconductor transmission line in a multilayered dielectric

medium above a ground plane.
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Fig. 2. A multiconductor transmission line in a multilayered dielectric
medium between two ground planes.

where [* is the transpose ( ~ ) conjugate (*) of I, and rms
values of current and voltage are used. The real part of P
is the time-average power transmitted by the line

=Re(I*V). (4)
The rate of decrease in P with z is given by
P = — _8_ T 37
"o e
- oV oT*
=_j«iL 9
I az az ()
Substituting from (1) and (2), we obtain

(6)

The transposes on [G] and [C] can be dropped since they
are symmetric matrices. The real part of — dP/dz is the
time-average power lost per unit length of line, that is:

P

P, Re( 3z

):PC+pD=i*[R]i+ 7[G]7

(7)

For any single mode, the ratio P, /P, is twice the attenua-

tion constant of that mode, the same as for the single-mode

line [4], [5].

To obtain the modes of the transmission line, we seck
solutions which vary as

T forot (8)

Y =Veswi=r (9)

where y is the propagation constant. Substituting these
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into (1) and (2), we have
I =[G+ juClV (10)
yW=[R+ joL]I. (11)

Substituting for ¥ from (11) into (10), and vice versa, we
obtain

[G+ jwC][R+ jwL]i=v%
[R+ joL][G+ juClV =v2V.

(12)
(13)

These are eigenvalue equations for y2. Since [C], [L], [G],
and [R] are all symmetric matrices, the left-hand coeffi-
cient matrix of (12) is the adjoint (with respect to the inner
product) of the left-hand coefficient matrix of (13), and
vice versa. Hence, the eigenvalues y? obtained from (12)
must be equal to those obtained from (13). The eigenvec-
tors I obtained from (12) will not be equal to the eigenvec-
tors ¥ obtained from (13). Rather § will be the right-hand
elgenvectors of the unsymmetric matrix [G + joC][R +
JwL] and V' will be the left-hand eigenvectors. The eigen-
vectors I and ¥ cannot be chosen independently of each
other, but instead must be chosen to satisfy (10) and (11).

III.

The simplest way to evaluate the conductance matrix [G]
is to replace the real dielectric constants €, in the loss-free
solution [1], [2] by complex dielectric constants [6]

THE CONDUCTANCE MATRIX

¢, =¢ — je’=¢(1— jtans,). (14)

Here, €/ and — ¢/ are the real and imaginary parts of €,
and tan6 =¢!’/¢/ is the loss tangent. The imaginary part of
€ is sometimes written in terms of a conductivity o as
¢” =0/w, but this is somewhat misleading since the losses
are usually not due to conduction current.

Using the complex dielectric constants in the previous
solution [1], [2], we obtain a complex “capacitance” matrix
[C] for the transmission-line system. This is actually the
complex matrix appearing in (1), or

JelC1=1G+ jeCl. (15)
The conductance is just the real part of (15), or
[G] =Re[jwC]=—Im(wC). (16)
The capacitance matrix for the lossy line is
[C]=Re[C]. (17)

For lines with low dielectric losses, the [C] of (17) should
be approximately equal to that for the loss-free case. To
summarize, we calculate [G + jwC] for the lossy line by
using the solution previously developed [1], [2], allowing all
dielectric constants to be complex, obtaining the complex
[C], and finally applying (15).

It is often more important to obtain the attenuation
constants of the modes than the [G] matrix itself. To do
this, we use the relationship

Py

2P, (18)

ap =
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where P, is given by (4) and P, by
=V*[G]V. (19)

It should be emphasized that both P, and P, must be
calculated for each particular mode. If the dielectric losses
are small, we can use the loss-free modes to calculate both
P, and Pp, similar to the procedure used in the next
section.

IV. THE RESISTANCE MATRIX

The usual way to compute the conductor losses on a
single-mode line is to calculate the attenuation constant by
a perturbation approach [5]. To extend this solution to a
multiconductor transmission line, we should apply this
approach separately to each mode. Once we have all the
modal attenuation constants, we can calculate the resis-
tance matrix for the line.

We start with the modes of the loss-free line, which are
solutions to the eigenvalue equations

[ClLli= %i (20)
[L][C]P =;};V (21)

where the superscripts o denote unperturbed, and

@
vo=—

= @)
is the phase velocity, with 8 the phase constant (y = JB)
Equations (20) and (21) are (12) and (13) with [R] = [G]=
Again, [° and V° must be related by (10) and (11), wh1ch
become

=y lc]i (23)

(24)

o=y [L]I°

in the loss-free case.

It is important to note that the phase velocities v, are
generally different for each mode, since the transmission
line has several different dielectrics. Such a line is referred
to by Kajfez [3] as a multivelocity transmission line. All we
know for sure is that the v, satisfy ¢ > v, > ¢/ \/E;; , where
c is the velocity of light and e, is the largest dielectric
constant present.

Once we solve (20)—(24) for the unperturbed mode volt-
ages and currents, we can calculate the unperturbed power
flow from (4) as

pPo= (25)

Note that the Re operator and the conjugate on I can be
dropped since the unperturbed V° and I° are nearly real.
The power loss per unit length of the transmission line can
be calculated by the usual perturbation formula

Po=~ Y Rs[ J2dl
k I

where Rj is the surface resistance of the metal, J; is the
current density on the kth conductor, and the integral is

IOVO

(26)
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taken over all metal surfaces /,. Equation (26) is evaluated
by using the moment solution [1], [2] in a summation
approximation to the integral. Once P, is evaluated for a
given mode, the attenuation due to conductor losses is
approximately given by

Pe
T8 (27)

Again (27) is valid only for each mode, not for arbitrary
excitations.

Finally, once we have the attenuation constants for each
mode, we can evaluate the resistance matrix as follows.
From (13) with [G]= 0 we have

(a+ jBYV=[R+ joL][juC]V. (28)
If the losses are low, we can take ¥ =¥ to be real. The
imaginary part of (28) is then
208V =w[R][C]V".
Finally, setting 8 =~ 8° and using (23), this reduces to
2aV° = [R]]°. (30)
Since we now know a, ¥, and [° for each mode, (30) is

sufficient for calculating [R]. To be specific, for mode i let
a,V?°, I° be denoted ar, V', I', and write (30) as

A=

(29)

20V} = Ry Qi+ Ry Qi+ -+ + RyyIy
2acli = Rull + ?‘.2%’.2 ..... S
ZaCVN == RN111 +RN212 <+ Rywly
i=1,2,-++, N,

If we take the Jjth equation from (30) for each i, we have
R [} +R, I+ -+ + R Iy =20V}
RuZ+ RalE b o4 Rpli=2atl )

R, IV + R, I +
j=132,' ‘ aN

4 R I =2020"

These are N? equations for the N2 unknowns [R]. Hence,
once the a; are determined, we can calculate all R,, for
the multiconductor transmission line.

As a word of caution, note that ¥ and I cannot both be
taken as real in (10) or (11) to calculate a. If this were
done, the resulting left-hand side of (30) would be wrong.
(The factor of 2 would be missing.) The reason for this
error lies in the fact that ¥ and I are slightly out of phase,
by an amount just sufficient to account for the factor of 2.

V. LossES ON THE GROUND PLANES

In the moment solution [1], [2], the current is determined
on the conducting lines and on the upper ground plane, if
present, but not on the lower ground plane. This is because
image theory is used to account for the current on the
lower ground plane. Hence, to include in (26) the loss on
the lower ground plane, we must first determine the cur-
rent on it.

The magnetic field H from an infinitely long filament of
current is given by the Biot—Savart law. If we consider the
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subsection of current J A/, in free space to be a filament,
its magnetic field has only a ¢; component given by

_IA
*  2mp,

(33)

where (p,., ¢,) are the local polar coordinates (see Fig. 3).
The tangential component of H at the ground plane is

L)
2mo, \ )

H,= H, cos¢, = (34)
where (x,, y,) are the local rectangular coordinates of J A/,
(see Fig. 3). The tangential component of H at a point
(x;,0) due to all elements of current (including those on the
upper ground plane, if present) above the lower ground
plane is the sum of (34) over all elements, or
1 JALy

Ht(x : ’O) = D _j—%—z' .

J (X (X J) + yj

(35)

The H, due to all image currents is also equal to (35),
hence the total H, at (x,,0) is just twice that of (35).
Hence, the current J;, at a point (x,,0) on the lower
ground plane is

1
JILGZ—Z .
m J (xl-xj)2+)/.]2

JAL
845 (36)

We use this result to numerically evaluate the losses in the
lower ground plane.

If the ground planes are perfect, we include in (26) only
that current on the transmission lines. If there exists an
imperfect lower ground plane, we include the current ele-
ments J,; ;A/,; in (26) in addition to the current on the
lines. If there also exists an imperfect upper ground plane,
its losses are included in (26) in the same manner as the
losses on the lines. For the evaluation of losses on the
lower ground plane, we include a width of it equal to 2 or 3
times the transverse extent of the transmission lines.

The incremental inductance rule, together with numeri-
cal differentiation could be used as suggested by Wheeler
[7]. However, the numerical integration used in this paper
is easier to implement in a general computer program.

VI. NUMERICAL EXAMPLES

A general computer program has been written for multi-
conductor transmission lines in multilayered dielectric
media. Some examples are given in this section to test the
program. We compare our results to those available in the
literature whenever possible.

Example 1

Consider a single conducting line of circular cross sec-
tion, diameter d =1, and a distance H above a perfect
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Fig. 4. A circular conductor above a perfectly conducting ground plane.

TABLEI .
COMPARISON OF ( A) THE NUMERICAL SOLUTION T0 ( B) THE
ANALYTICAL SOLUTION FOR THE TRANSMISSION LINE OF FIG. 4

H Solution C(F/m.) R( /m.) G(U/m-)

.| @ 1.073 x 10720 | o.8611 x 1073 | 0.8091 x 1072
(B) 1.078 x 10710 0.8580 x 107> 0.8131 x 1074

s W 0.8944 x 10720 | 0.8450 x 1072 | 0.6744 x 107
(®) 0.8980 x 10719 0.8426 x 1073 | 0.6771 x 107

oW 0.8008 x 10710 | 0.8407 x 107> | 0.6038 x 107
(8) 0.8037 x 10720 | 0.8374 1072 | 0.6060 x 107

s W 0.7610 x 10720 | 0.8385 x 107> | 0.5587 x 107
® 0.7434 x 10729 0.8350 x 1073 | 0.5605 x 107

ground plane as shown in Fig. 4. The dielectric medium
surrounding the line is infinite in extent with dielectric
constant €, =4 and loss tangent tand=1.2x10"3, The
circular conductor is made of copper for which the surface
resistance is R;=2.61x10""/f, and the frequency f is
taken to be 100 MHz. The numbers of subsections chosen
are 20 for the circular conductor and 30 for the ground
plane from x=—1.5H to x=1.5H, where H is the dis-
tance from the ground plane to the axis of the circular
conductor.

Analytical formulas for the L, C, R, and G parameters
of the two-wire line can be found in {5, table 9.01]. For the
single-wire line over ground, L and R are one-half those
values, and C and G are twice those values, or

L=2—‘;-cosh“1(2H/d) (37)

e

©= cosh ™' (2H/d) (38)

R=2| __2H/d (39)
™ J2H/dY -1 »
27wetand (40)

" cosh ! (2H/d)’

A comparison of the results computed from our program
with the above analytical solution is given in Table I. The
value of C computed from the complex dielectric constant
agrees with that computed from a real dielectric constant
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Conducting strip

grounded conducting
plane

Fig. 5. A microstrip transmission line.

TABLEII
ResuLts CoMPUTED WITH THE GENERAL PROGRAM FOR THE
MicrostrIP OF Fi16. 5 -

W/H 01 0.2 0.3 04 0.6 10 12 14 2.0

R(2/m) 0.06605 | 0 03993 | 0.02986 | 0 02400 | 0.01848 { 0.01315 | 0.01173 | 0 01063 | 0,00843

aZH
—%—o-(dﬂ) 21.981 | 13.269 | 9.937 8.120 6.150 4,376 3.904 3 538 2.807
s

using the previous program [1] to more than four signifi-
cant figures in each case.

Example 2

Next consider the microstip shown in Fig. 5. The strip-
line and the ground plane are both made of copper, with
surface resistance R, = 2.61x10"\/f. The frequency f is
taken to be 1 MHz. The substrate has a dielectric constant
¢,=11.7 and a loss tangent tand =10">. Above the strip,
¢,=1 and tand =8x10"* The thickness of the substrate
is H = 0.02 and the thickness of strip is 7= 0.02H.

For the program, we use 26 subsections for the strip
contour, 12 subsections from x=—15 [W, H] to x=
—0.5W on the dielectric interface to the left of the strip,
and 12 subsections from x=0.5W to x=1.5 [W, H] on
the dielectric interface to the right of the strip. Here [W, H]
denotes the larger of W and H. The numerical results are
listed in Table II. The last row of the table is based on the
relationship

(dB/m) (41)

ae= 4.343—ZR—

(/]

where Z, is the characteristic impedance of the stripline.
Fig. 6 shows a plot of the last column of Table II com-
pared with the same parameter obtained in [8] by an
analytical approach. The agreement between these two very
different methods of solution is good.

Example 3

To illustrate the generality of the solution and computer
program, the example shown in Fig. 7 is considered. The
numbers of subsections used are 8 for the circular conduc-
tor, 6 for the other three conductors, 15 for the upper
ground plane from x = —1.5 to x =1.5, 8 for the upper left
dielectric interface from x=—1.5 to x=0.1, 6 for the
upper right dielectric interface from x=0.3 to x=1.5, 5
for both the lower left and right dielectric interfaces from
x==-15t0 x=—-0.5 and from x=0.5 to x=1.5, and 2
for the lower middle dielectric interface from x = —0.1 to
x = 0.1. The conducting material is copper for which R =

709
o 1
—— analytical
20} \ xxx —_— ]
T 0 N
;5 8
; [
) : S
N
2 \\
N
IO‘I Q2 0304 06 0810 ? AR 3
WH

Fig. 6. Comparison of numerical and analytical [8] solutions for con-
ductor attenuation on a microstrip transmission line (7/H = 0.02).
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medium between two ground planes.

TABLE III
THE MATRICES [C], [ L], [G], AND [ R] FOR THE MULTICONDUCTOR
TRANSMISSION LINE OF F1G. 7

I J c(1,D) L(I,7) G(I1,T) R(I,J)

1 1 0.3088E-09 0.2714E-06 0.6420E-06 | 0.7375E-03
1 2 -0.3606E~10 0.4488E~07 ~0.1701E~06 | 0.8518E~04
1 3 ~0.2848E-11 0.1295E-07 -0.1327E-07 | 0.4403E-04
1 4 ~-0.2459E~10 0.3442E-07 -0.6070E-07 | 0.6033E-04
2 1 -0.3606E-10 0.4488E-07 ~0.1701E-06 | 0.8518E~04
2 2 0.3331E-09 0.2594E~06 0.1481E-05 | 0.6801E-03
2 3 -0.3045E-10 0.3447E-07 -0.1498E-06 | 0.8758E-04
2 4 ~0.1641E~10 0.3742E-07 ~0.9688E~07 | 0.1401E-03
3 1 -0.2848E~11 0.1295E~-07 -0.1327E-07 | 0.4403E-04
3 2 -0.3045E-10 0.3447E-07 -0.1498E~06 | 0.8758E-04
3 3 0.3806E~-09 0.2570E-06 0.1608E-05 | 0.6711E-03
3 4 -0.3178E~10 0.5248E-07 -0.1777E-06 | 0.1604E-03
4 1 ~0.2459E~10 0.3442E-07 ~0.6070E-07 | 0.6033E-04
4 2 -0.1641E-10 0.3742E-07 -0.9688E-07 | 0.1401E-03
4 3 ~0.3178E-10 0.5248E-07 ~-0.1777E-06 | 0.1604E-03
4 4 0.2328E-09 0.3326E-06 0.6383E-06 | 0.6901E-03

2.61x1077,/f, and the frequency is 1 MHz. The computed
results are listed on the following two pages of computer
output. No alternative solution can be given for compari-
son. The upper rectangular conductor is #1, the triangular
conductor #2, the lower rectangular conductor #3, and
the circular conductor #4.
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TABLE IV
THE EIGENVALUES, ATTENUATION CONSTANTS, AND
EIGENVECTORS FOR THE MULTICONDUCTOR TRANSMISSION LINE

OF FI1G. 7
MODE NUMBER 1 EIGEN, = 0.8775E+01 ALPHA = 0.1296E-04
MODE NUMBER 2 EIGEN. = 0.7675E+01 ALPHA = 0.1174E~04
MODE NUMBER 3 EIGEN. = 0.7061E+01 ALPHA = 0.1277E-04
MODE NUMBER 4 EIGEN, = 0.6529E+01 ALPHA = 0.8297E~05

Mode voltages Mode currents

V(1,1) = 0.1794E+00 I(1,1) = 0.3239E-02
v(2,1) = 0.3319E+00 I(2,1) = 0.7304E-02
V(3,1) = 0.8506E+00 1(3,1) = 0.3051E-01
V{4,1) =.0.3662E+00 I(4,1) = 0.4892E-02
V(1,2) = 0.6429E+00 1(1,2) = 0.1845E-01
v(2,2) = 0.7087E+00 1(2,2) = 0.2365E-01

V{(3,2) = -0.2590E+00
V(4,2) = 0.1318E+00

1(3,2)=-0.1365E-01
I1(4,2) = 0.1241E-02

V(1,3) =-0.7955E+00
v(2,3) = 0.5605E+00
V(3,3) = -0.8412E-01
V(4,3) = 0.2145E+00

I(1,3)=-0.3056E-01
I1(2,3) = 0.2419E-01
1(3,3)=-0.6051E-02
1(4,3) = 0.7102E-02

V(i,4) =~-0.9530E-01
V(2,4) = 0.1939E+00
V(3,4) = 0.1191E+00
V(4,4) = -0.9691E+00

1(1,4)=-0.1517E-02
1(2,4) = 0.9421E-02
I(3,4) = 0.8270E-02
1(4,4)=-0.2701E-01

VIIL

The numerical solution, implemented by the general
purpose computer program of the report [9], has been
found to be accurate for cases previously treated in the
literature. Those cases previously considered were all for
problems of some particular geometry, and all for single-
mode transmission lines. Our solution is general in that it
can treat multiconductor transmission lines of arbitrary
cross sections in multilayered dielectric media. Our solu-
tion is also applicable to multiple dielectric media of other
shapes, not necessarily layered, but our computer program
is not written to handle such cases.

For the conductance matrix [G], the solution is the same
as for the previously treated loss-free solution, except that
the real dielectric constants are replaced by the complex
ones of (14). For the resistance matrix [ R], an extension of
the usual perturbation method of [5] is used. This extension
requires that first the modes of the multiconductor trans-
mission line be determined from the eigenvalue equation
(21), and second the attenuation constants of all modes be
determined from (27). Then, if desired, the [ R] matrix for
the multiconductor line is determined from (30). This
solution uses the approximation of conductor surface resis-
tance R for the metal surfaces.

DISCUSSION

REFERENCES

[11 C.Wei, R. F. Harrington, J. R. Mautz, and T. K. Sarkar, “Multicon-
ductor transmission lines in multilayered dielectric media,” TEEE
Trans. Microwave Theory and Tech., vol. MTT-32, p. 439, Apr. 1984.

[21 C. Wei and R. F. Harrington, “Extension of the multiconductor
transmission line solution to zero-thickness conductors and to con-
ductors between parallel ground planes,” Electrical and Computer
Engincering Department, Syracuse Univ.,, Syracuse, NY, Rep.
TR-83-5, Mar. 1983.

[3] D. Kajfez, “Multiconductor transmission lines,” Dep. of Electrical
. Engineering, University of Mississippi, University, MS, June 1972,
[4] S. Frankel, Multiconductor Transmission Line Analysis. Dedham,

MA: Artech House, 1977. :

[5] S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in
Communication Electronics. New York: Wiley, 1965.

[61 R. F. Harrington, Time-Harmonic Electromagnetic Fields.
York: McGraw-Hill, 1961.

[71 H. A. Wheeler, “Transmission-line properties of a strip on a dielec-
tric sheet on a plane,” IEEE Trans. Microwave Theory and Tech.,
vol. MTT-25, pp. 631-647, Aug. 1977.

[8] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in microstrip,”
IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342-350,
June 1968.

[9] R. F. Harrington and C. Wei, “Losses on multiconductor transmis-
sion lines in multilayered dielectric media,” Electrical and Computer
Engineering Department, Syracuse Univ.,, Syracuse, NY, Rep.
TR-83-16, Sept. 1983.

New

Roger F. Harrington (S5'48-A'53-M’57-
SM'62-F'68) was born in Buffalo, NY, on De-
cember 24, 1925. He received the B.EE. and
M.E.E. degrees from Syracuse University, Syra-
cuse, NY, in 1948 and 1950, respectively, and the
Ph.D. degree from Ohio State University, Col-
umbus, OH, in 1952.

From 1945 to 1946, he served as an Instructor
at the U.S. Naval Radio Materiel School,
Dearborn, MI, and from 1948 to 1950 he was
employed as an Instructor and Research Assis-
tant at Syracuse University. While studying at Ohio State University, he
served as a Research Fellow in the Antenna Laboratory. Since 1952 he
has been on the faculty of Syracuse University, where he is presently
Professor of Electrical Engineering. During 1959-1960 he was Visiting
Associate Professor at the University of Illinois, Urbana, in 1964 he was
Visiting Professor at the University of California, Berkeley, and in 1969
he was Guest Professor at the Technical University of Denmark, Lyngby,
Denmark.

Dr. Harrington is a member of Tau Beta Pi, Sigma Xi, and the
American Association of University Professors.

*

Cao Wei was born in Changsha, Hunan Pro-
vince, China, in 1939. He graduated and received
the B.S. degree from the Beijing Institute of Posts
and Telecommunications in 1959.

After graduation, he taught mathematics for
three years in the Nanjing Institute of Posts and
Telecommunications, Nanjing, China. He then
returned to the Beijing Institute of Posts and
Telecommunication to study in the Department
of Radio Telecommunication, from which he
graduated in 1965. Since then, he has taught and
done research in the areas of electromagnetics, microwave techniques, and
antennas at the Nanjing Institute of Posts and Telecommunications. In
September 1981, he came to the United States as a Visiting Scholar to
undertake research with Professor R. F. Harrington in the Department of
Electrical and Computer Engineering, Syracuse University.




